
RCP Names

Marc Paterno
CD Special Assignments, FNAL

August 14, 2000

Abstract

This document is a brief explanation of some of the rules concerning
RCP names, and how they are handled by the database.

1 The Purpose of RCP Names

Each parameter set (a collection of parameters, which gets presented to a C++
program in the form of an instance of the class RCP) carries a unique identifier,
its RCPID (an instance of the class RCPID). While these identifiers are useful
in a program, they aren’t the most mnemonic method of identifying parameter
sets. For this reason, there also exist RCP names. While each parameter set
has only one RCPID, and each RCPID corresponds to only one parameter set,
RCP names form a many-to-one map with parameter sets. That is, each RCP
name is only associated with one parameter set, but each parameter set may be
known by many RCP names.

2 What’s in a Name

An RCP name consists of several parts:

• a database name, which is the name of the database that contains this
parameter set,

• a package name, which is the name of the CVS package (or “fake package”,
for parameter sets not in the “official” database) with which this parameter
set is associated,

• an object name, which is the name of this parameter set within the package,
and

• a version tag, which is the string which identifies the version of the object
with this name. In the “official” database, this version tag will be the
same as the version tag of the library release with which this parameter

1



set is associated. In a “personal” database, this version tag will be in the
form of a timestamp.1

3 Rules Concerning Names

When one uses the function edm::RCPManager::extract(std::string& pkg,
std::string& obj) to obtain a parameter set, this actually specifies the pack-
age name and object name parts of the full RCP name. The search that is
conducted will eventually result in the database name and version tag parts of
the name being completed by the database in which the parameter set is found,
or by the database to which it is added. When the search for a local RCP script
finds one, it results in a partial RCP name being formed, one which has only the
package name and object name portions completed. This name will “match”
any RCP name that has the same package name and object name.

One of the differences between the “official” database and the “personal”
databases is that the “official” database is under a strong restriction to which
the “personal” databases are not subject.

The “official” database does not issues timestamp-style version tags; when
the release managers update this database, new parameter sets are added with
names containing the version tag given by the name of the build (e.g. t00.65.00).
Parameter sets already known to the database do not need to be added, but
they are given an additional name, one which contains the new version tag.

When parameter sets are extracted from the “official” database (using
edm::RCPManager::extract(std::string& pkg, std::string& obj)), only
those parameter sets matching the release currently in use (established by the
command setup D0RunII <version>) will be extracted. This is to ensure that
a program does not mix parameter sets from different releases.

In contrast, when a new parameter set is added to a “personal” database,
it is assigned a version tag that is created by the database itself, in the form
of a timestamp (note that the timestamp is created using the current Universal
Time). It is rarely necessary to add a second RCP name which differs only
in version tag to a “personal” database, since a “personal” database is not
under the restriction of returning only parameter sets with a specific version
tag. Instead, a “personal database” will return the most recent parameter set
with the given name, where most recent means the parameter set with the most
recently added name.

4 Where the Rules Cause Trouble

The document RCP Rules for DØ lists the set of rules which dictate the be-
havior of the function edm::RCPManager::extract(std::string& pkg,

1This is actually a slight simplification; the behavior of these databases is controlled by the
file pointed to by the environment variable RCP DB NAMES FILE. The behavior described here
is the behavior established by default at DØ.

2



std::string& obj). In this document, case 2.1.1.1 is the most difficult to
handle. This case states the behavior required for the system under the follow-
ing circumstances.

• A script is found; the an incomplete parameter set specified by this script is
formed. The parameter set is incomplete because it is lacking an RCPID,
which must be supplied by a database.

• A parameter set that matches2 this new parameter set is found in one of
the readonly databases.

• None of the RCP names associated with the parameter set found in the
database match the partial RCP name formed from the arguments to the
extract function.

Under these circumstances, the rules require that an exception be thrown,
indicating that the parameter set specified by the script can not be associated
with the given name. To understand the reasoning that lead to this rule, let us
consider the alternatives.

4.1 Alternative 1

Given the case described, the requirement could have been that we add a new
RCP name to this parameter set in the readonly database. But in this case, the
database is not really readonly; we are modifying it with such a call.

Because the database could be modified by such a call, it would not be
feasible to distribute this database in “FileSystemDB” form (or in any other
form) to remote institutions. Since every user can modify the “official” database,
it would become prohibitively difficult to assure that a program run at a remote
institution, using a copy of the “official” database distributed along with a
given library release, would give the same result as a program run at Fermilab,
where there resides the original copy of the “official” database, which would be
continutally under modification by this case.

This was considered unacceptable, and so this choice was rejected.
This problem would be eliminated if all programs using the “official”

database were always required to contact a single central database server. Not
all remote institutions have sufficiently good network connections to make this
feasible. It was considered unacceptable to require a network connect to a single
central database in order to make use of the “official” RCP database.

2Note that two parameter sets “match” when the pairs of names and values in one are equal
to the pairs of names and values in the other. The RCP names, partial or otherwise, associated
with the parameter sets are irrelevant in determining the match; only the parameters and their
names are considered. Note also that the order in which parameters are defined in an RCP
script makes no difference to the collection of names and values in the RCP object that is
created, and so that order also has no bearing on whether two parameter sets match.

3



4.2 Alternative 2

The requirement could have been to add the new RCP name to the currently
defined writable database. However, there is still a requirement that the pa-
rameter set (regardless of the associated RCP name) have a unique RCPID, so
the RCPID contained in the RCP object returned to the user must be that of
the matching parameter set in the “official” database. This would mean that
various “personal” databases would then contain parameter sets which carry an
RCPID which says that parameter set comes from the “official” database.

Consider what then happens when two users each run a program that re-
quests an RCP with the code given in Figure 1.

edm::RCPManager pman = edm::RCPManager::instance();
edm::RCP r = pman->extract("packageA", "object1");

Figure 1: A simple code snippet that leads to confusion.

Suppose that user A runs his program while using the “official” database
and his “personal” database, and runs into this case. His program will find the
RCP r, which will be carrying an RCPID issued by the “official” database. It
will look to user A just like this parameter set was found in the official database,
because in fact it was.

Suppose also that user B runs his program (containing the same code)
while using the “official” database, but does not have the local script “pack-
ageA/rcp/object1.rcp”.3 His call to extract will fail, throwing an exception
which carries a message stating that no parameter set with the given name
could be found.

User A and user B might have some very confusing times ahead, trying to
figure out how they seem to see different things in the same “official” database.

This behavior was considered unacceptably confusing, and so it was rejected.

4.3 Alternative 3

The final alternative is to have the system throw an exception which carries
enough information to allow the user to determine how to fix the problem –
specifically, what name he should use to extract the parameter set which already
has the values that the script indicates he wants.

This behavior was considered to be annoying, but seemed to be the least of
the three evils. Accordingly, this is the behavior specified for the system.

5 Final Notes

The behavior of the RCP system in this circumstance has been reviewed sev-
eral times, most recently during the “DØ Software Infratructure Week”, in

3It makes no difference to this argument whether or not user B is using a writable database.

4



May 2000. Each time, the reviewing group has decided that the choice of “alter-
native 3” above is the appropriate choice. Requests for change in this behavior
should not go to the authors of the RCP package, but rather to the leaders of
the DØ software infrastructure group.

The exception thrown by the system in case specified in Section 4 is an in-
stance of the class edm::XRCPCantAssignNewName, which inherits from the class
edm::XRCP (the base class for most exceptions thrown by the RCP system)4,
which in turn inherits from ZMexception, the base class of the ZOOM group’s
exception classes.

It is strongly recommended that all use of the RCP system (including calls
to gain access to the sole instance of RCPManager, calls to extract RCP ob-
jects, and calls to get parameters from RCP objects) be wrapped within a try
block, which is followed by a catch block which accepts edm::XRCP exceptions,
and prints the message all such objects contain to the appropriate place. These
exceptions have been designed to carry enough information to help users deter-
mine the cause of failure in their programs. Suggestions for improvement in these
error messages should go to the czar of the RCP library (paterno@fnal.gov).

Note that the DØ framework automatically catches any exceptions thrown
by code in any framework package, and will then print the appropriate error
message. Of course, it is impossible for the framework itself to know how to
continue in such a case, so after catching the exception, the framework prints
the error message and kills the program.

Non-framework executables must provide the try/catch blocks themselves.

4Some exceptions thrown by the RCP parser subsystem are defined in the header
XParser.hpp and inherit from std::exception. In a future release, these exceptions will
also be migrated to inherit from edm::XRCP.

5


	The Purpose of RCP Names
	What's in a Name
	Rules Concerning Names
	Where the Rules Cause Trouble
	Alternative 1
	Alternative 2
	Alternative 3

	Final Notes

